设置首页收藏本站
开启左侧

关于机器视觉的一些总结(四)

[复制链接]
mindvision 发表于 2015-12-7 12:05:42 | 显示全部楼层 |阅读模式
本帖最后由 mindvision 于 2015-12-9 09:35 编辑

关于机器视觉的一些总结(四)
20141125519147535.jpg
在设计工业机器视觉系统时,使用工业数字相机还是工业模拟相机是最重要的决定之一。二者各有其优缺点,但归根结底要根据成本和一些关键操作因素来选择。如果考虑了这些因素,哪一项技术更有优势就会明朗化了。

机器视觉基础
机器视觉被应用于自动质量检验、工艺控制、参数测量和自动组装等等许多领域。在这些系统中,相机是决定着成本、速度和精度的关键组件。工业模拟相机和工业数字相机都可以用在这些系统中,而了解工业相机的性能规格及其在各种视觉任务中的重要性,对于把机器视觉付诸工业控制是最基本的一步。
机器视觉系统包括三个主要部分:工业相机、采集卡和存储并分析图像以提取信息的计算机(或图像处理器)。图像处理器和采集卡属于相对容易选择的电子装置,它们的主要参数是存储能力和处理速度。
工业相机是这些系统中情况最为复杂的部分。现代的工业模拟相机和工业数字相机采用电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)芯片来捕获图像并生成电子信号发送给计算机进行处理。

CCD和CMOS成像器由一系列方形光电池组成,它们将收集到的光子转化为电子,并将生成的电荷积蓄起来。在CCD中,当从芯片中每次读取一个像素时,电荷被转换成电压;而在CMOS中,每个光敏器件旁边的电路将光能转化成电压。
二者在图像质量上没有明显的优劣之分。基于CMOS的工业相机需要的部件较少,电耗较低,提供数据的速度也比基于CCD的相机快; 但CCD则是更为成熟的技术,能够以较低的噪声提供质量更好的图像,而弱点是数据传输速度较慢,不太灵活,部件较多和电耗较高。

信号精度
CCD和CMOS芯片在内部都生成模拟信号,因此,模拟相机和数字相机之间的主要区别在于图像是在哪里被数字化的。数字相机在相机里将信号数字化,并且通过串行总线接口(比如FireWire, USB, Camera Link, Gigabit Ethernet)将信号以数字方式传输给计算机(或图像处理器)。而在另一方面,模拟相机系统并不是在其内部将图像信号数字化(数字化是由计算机完成的),所以,模拟信息是通过同轴电缆而进行传输的。
尽管两种方法都能够有效地传输信号,但模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。
数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。数字相机的典型动态范围在55分贝到60分贝之间,而模拟相机则为45分贝到50分贝左右。

所用电缆的长度和类型也影响着信号的精度。模拟相机的电缆简单而且便宜,在电噪声导致信号严重失真之前能够将信号可靠地300米以上。由于数字相机传输的是高带宽信号,电缆的长度受电缆中信号良师衰减(损失)水平的限制。根据使用的通信协议的不同,电缆的典型长度如下:
· FireWire: 大约10米到20米
· USB: 大约10米到 20米
· Camera Link: 大约10米

现在,市场上有了采用千兆位以太网标准电缆的新系统。这些电缆能够将数字图像数据传输100米左右而不发生损失。
分辨率和捕获速度
分辨率是描述相机性能的重要参数之一,它包括两个方面:
· 阵列中传感单元或称像素的数量
· 每个传感单元的大小

模拟相机通常是基于视频图形阵列(VGA)成像格式,分辨率被限制在大约640×480像素。这只是机器视觉系统要求的下限。而在另一方面,数字相机能够达到80兆像素甚至更高。模拟相机和数字相机典型的像素大小在3微米到20微米范围内。
第二个重要参数是帧速,或者说相机连续提供图像的速度。帧速越高,在给定时间内能够完成的检验、测量或识别工作就越多。像素数和帧速之间存在着相互影响,所以,相机的像素数越多,其帧速越低。但是,这并非是一成不变的规则,因为尺寸越小的半导体转换速度通常就越快,所以像素数相同的两台相机可能具有差别很大的帧速。
640×480像素模拟相机的典型帧速为每秒30帧,而分辨率为2兆像素(1600×1200像素)的数字相机能够达到相同的帧速。16兆像素的数字相机帧速约为每秒3帧。
另外,相机传感器可采用多端口设计,将图像分解成片段以同时读出。还可以在软件的控制下只读取图像中“感兴趣”的部位而不是读取全部传感器阵列,同样能够缩短传输时间。

其他因素
除了分辨率和帧速,其他重要的设计因素还包括动态范围和灵敏度。
动态范围或图像每个像素的字节数决定着采集卡需要的存储容量以及图像处理器需要的算法精度。它也影响着传感器的曝光宽容度。每像素只有几个字节的相机将无法像字节数更高的相机那样满足很宽的照明条件范围。一般来说,数字相机的动态范围指标更好一些,因为它们的抗噪声性能更好。
传感器灵敏度也决定着可靠地使用相机所需要的照明条件。在光线不好或者为防止运动图像模糊而提高快门速度的情况下,要求相机具有更高的灵敏度。
同波长有关的相机灵敏度也许非常重要。根据应用的不同,可能需要采用发光二极管甚至红外或紫外照明,相机的波长灵敏度也应当匹配。最后,相机生成彩色或者单色图像的能力也十分重要。

关于总成本的考虑
各个设计参数共同影响着相机的成本。典型情况下,由于传感器尺寸的原因,像素数越高的相机就越昂贵。与此类似,在一定的分辨率下,帧速提高,成本也趋向于增加。同时提高帧速和分辨率通常要求相机具有多端口读出,这使系统的复杂程度增加,因而提高了成本。
从上世纪七十年代起,许多供应商都开始提供基于CCD和CMOS技术的模拟相机。典型的价位在200美元左右。模拟相机采集卡的价位也在200美元左右。
相比之下,数字相机的价位在1,000美元到20,000美元范围内大幅度变化,数字相机采集卡的价位在1,000美元到2,000美元之间。但是,随着数字相机和采集卡变得越来越普及,它们的价位也在逐渐降低。
在对成本进行比较时,设备的价格还只是问题的一个方面。设计人员还必须考虑软件、硬件、安装、维护和升级等方面的成本,还有,给定的相机技术是否能够达到要求的性能。

完成特定任务所需要的工业相机数量在安装成本中占到了一定比例。举例来说,从1毫米见方的检验区域中解析出1微米见方的片段,可能需要用到5台模拟相机和采集卡,而这些制备必须保持同步以获得清晰的图像。
只使用1台百万像素的工业数字相机和采集卡就可以解析同样大小的区域,而且无需在计算机中同步处理多幅图像。例如,一家汽车制造商的保险杠检验系统需要12台模拟相机、12片采集卡12套软件和3台计算机。公司发现,就算可能,使所有相机的图像同步化以获得一幅保险杠的可靠图像也是难度相当大的。用1台百万像素的数字相机、1片采集卡和1台计算机取代了这个相机阵列后,系统的安装和维护都变得十分简单和方便。
一般来说,典型的数字相机需要更长的时间进行安装和设定,但对于前述应用实例而言,需要的数字相机数量大为减少。因此,维护成本也将大幅度降低。另外,数字相机的功能性和灵活性都更强,能够快速重新编程,在系统运行过程中即可进行现场固件升级。而相比之下,模拟相机则必须被送回制造厂才能进行性能升级。

最后一项成本因素是功率消耗。典型的模拟相机需要5瓦到10瓦操作功率,而分辨率指标相当的数字相机则不到1瓦。
应用要求
对于一项应用,选择什么样的工业相机合适,取决于机器视觉系统想要达到什么目标。视觉检验、非接触式测量、物体识别和定位是三个常见的应用,每一个都有不同的要求。
典型的检验系统将图像同模板或者“已知合格品”图像进行对比以检查偏差。高质量的图像一般需要用图像处理器来进行可靠的对比。这意味着,工业相机必须同时具有高分辨率和每像素足够的字节数。可能也需要彩色成像能力。
非接触式测量计算一个物体占据的像素数量,并将计数结果转化成尺寸数值。这样的系统可能需要高分辨率,而每像素的字节数要求可能不必太高。图像处理器通常只提取图像的边缘或外形轮廓信息,所以,一般并没有很高的动态范围和彩色能力要求。
物体识别和定位有各种各样的要求。在许多情况下,图像处理系统在图像中搜寻以识别出基准特征。需要的分辨率取决于这些特征相对于整个图像尺寸的大小。识别系统可能会需要彩色成像能力。

为机器视觉系统选择相机时要认真考虑工业相机的性能和成本。虽然工业模拟相机远比工业数字相机便宜,但它们的分辨率和图像质量较低,所以可能会被局限在要求不太高的应用中。数字相机比模拟相机昂贵,但它们的高成本可能值得为要求高速度、高准确度和高精度的应用而付出。

四种工业相机接口技术的比较
  
接口技术


GigE
Firewire
USB
Camera Link
标准类型
Commercial
Consumer
Consumer
Commercial
连接方式
点对点或LAN link


(Cat 5 TP - RJ45)
点对点


– 共享总线
主/从


– 共享总线
点对点


– (MDR 26 pin)
带宽
<1000Mb/s

连续模式

<400Mb/s

连续模式

<12Mb/s USB1 <480Mb/s  USB2 突发模式
<2380Mb/s (base)  <7140Mb/s (full)

连续模式

距离:


-max w/switch


-max w/fiber
<100m(no switch)


No Limit


No Limit
<4.5m


72m


200m
<5m


30m
<10m
可连接设备数量
Unlimited
63
127
1
PC Interface
GigE NIC
PCI card
PCI card
PCI Frame grabber

1、模拟相机&&数字相机
模拟相机必须带数字采集卡,标准的模拟相机分辨率很低,另外帧率也是固定的。这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。

2、相机分辨率
根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。
应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳(我见过最多的人抱着亚像素不放说要做到零点几的亚像素,那么就不用这么高分辨率的相机了。比如他们说如果做到0.1个像素,就是一个缺陷对应0.1个像素,缺陷的大小是由像素点个数来计算的,试问0.1个像素的面积怎么来表示?这些人以亚像素来忽悠人,往往说明了他们的没有常识性)。换言之,我们仅仅是用来做测量用,那么采用亚像素算法,130万像素的相机也能基本上满足需求,但有时因为边缘清晰度的影响,在提取边缘的时候,随便偏移一个像素,那么精度就受到了极大的影响。故我们选择300万的相机的话,还可以允许提取的边缘偏离3个像素左右,这就很好的保证了测量的精度。

3、CCD&CMOS
如果要求拍摄的物体是运动的,要处理的对象也是实时运动的物体,那么当然选择CCD芯片的相机为最适宜。但有的厂商生产的CMOS相机如果采用帧曝光的方式的话,也可以当作CCD来使用的。又假如物体运动的速度很慢,在我们设定的相机曝光时间范围内,物体运动的距离很小,换算成像素大小也就在一两个像素内,那么选择CMOS相机也是合适的。因为在曝光时间内,一两个像素的偏差人眼根本看不出来(如果不是做测量用的话),但超过2个像素的偏差,物体拍出来的图像就有拖影,这样就不能选择CMOS相机了。

4、彩色&黑白
如果要处理的是与图像颜色有关,那当然是采用彩色相机,否则建议你用黑白的,因为黑白的同样分辨率的相机,精度比彩色高,尤其是在看图像边缘的时候,黑白的效果更好。

5、帧率
根据要检测的速度,选择相机的帧率一定要大于或等于检测速度,等于的情况就是你处理图像的时间一定要快,一定要在相机的曝光和传输的时间内完成。

6、线阵&面阵
对于检测精度要求很高,面阵相机的分辨率达不到要求的情况下,当然线阵相机是必然的一个选择。

7、传输接口
根据传输的距离、稳定性、传输的数据大小(带宽)选择USB、1394、Camerlink、百兆/千兆网接口的相机。

8、CCD靶面
靶面尺寸的大小会影响到镜头焦距的长短,在相同视角下,靶面尺寸越大,焦距越长。在选择相机时,特别是对拍摄角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。因此在选择CCD尺寸时,要结合镜头的焦距、视场角一起选择,一般而言,选择CCD靶面要结合物理安装的空间来决定镜头的工作距离是否在安装空间范围内,要求镜头的尺寸一定要大于或等于相机的靶面尺寸。

9、相机的价格
同样参数的相机,不同的厂家价格各不相同,这就靠大家与厂家沟通和协商了。一般说来,如果你有量的话,整体价格跟你单买一个的价格是差别很大的。
aag.png

工业相机到传感器对应放大倍率
  
工业相机像幅
  
传感器尺寸( 对角线 )
9’’
12’’
13’’
20’’
27’’
1/4’’
57.2x
76.2x
82.6x
127x
171.5x
1/3’’
38.1x
50.7x
55.0x
84.6x
114.1x
1/2’’
28.6x
38.1x
41.3x
63.5x
85.7x
2/3’’
20.8x
27.7x
30.0x
46.2x
62.3x
1’’
14.3x
22.2x
23.8x
31.8x
42.9x




1. 什么是CCD摄像机?
CCD是Charge Coupled Device(电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点。

2. CCD摄像机的工作方式
被摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。

3. 分辨率的选择
评估摄像机分辨率的指标是水平分辨率,其单位为线对,即成像后可以分辨的黑白线对的数目。常用的黑白摄像机的分辨率一般为380-600,彩色为380-480,其数值越大成像越清晰。一般的监视场合,用400线左右的黑白摄像机就可以满足要求。而对于医疗、图像处理等特殊场合,用600线的摄像机能得到更清晰的图像。

4. 成像灵敏度
通常用最低环境照度要求来表明摄像机灵敏度,黑白摄像机的灵敏度大约是0.02-0.5Lux(勒克斯),彩色摄像机多在1Lux以上。0.1Lux的摄像机用于普通的监视场合;在夜间使用或环境光线较弱时,推荐使用0.02Lux的摄像机。与近红外灯配合使用时, 也必须使用低照度的摄像机。另外摄像的灵敏度还与镜头有关,0.97Lux/F0.75相当于2.5Lux/F1.2相当于3.4Lux/F1.

5. 参考环境照度:
夏日阳光下 100000Lux 阴天室外 10000Lux
电视台演播室 1000Lux 距60W台灯60cm桌面 300Lux
室内日光灯 100Lux 黄昏室内 10Lux
20cm处烛光 10-15Lux 夜间路灯 0.1Lux

6. 电子快门
电子快门的时间在1/50-1/100000秒之间, 摄像机的电子快门一般设置为自动电子快门方式,可根据环境的亮暗自动调节快门时间,得到清晰的图像。有些摄像机允许用户自行手动调节快门时间,以适应某些特殊应用场合。
7. 外同步与外触发
外同步是指不同的视频设备之间用同一同步信号来保证视频信号的同步,它可保证不同的设备输出的视频信号具有相同的帧、行的起止时间。为了实现外同步,需要给摄像机输入一个复合同步信号(C-sync)或复合视频信号。外同步并不能保证用户从指定时刻得到完整的连续的一帧图像,要实现这种功能,必须使用一些特殊的具有外触发功能的摄像机。

8. 光谱响应特性
CCD器件由硅材料制成,对近红外比较敏感,光谱响应可延伸至1.0um左右。其响应峰值为绿光(550nm)。夜间隐蔽监视时,可以用近红外灯照明,人眼看不清环境情况,在监视器上却可以清晰成像。由于CCD传感器表面有一层吸收紫外的透明电极,所以CCD对紫外不敏感。彩色摄像机的成像单元上有红、绿、兰三色滤光条,所以彩色摄像机对红外、紫外均不敏感。

9. CCD芯片的尺寸
CCD的成像尺寸常用的有1/2"、1/3"等,成像尺寸越小的摄像机的体积可以做得更小些。在相同学镜头下,成像尺寸越大,视场角越大。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分为CMOS摄像头和CCD摄像头两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
在机器视觉系统中,包含独立的工业摄像头,采用业界标准的电气接口,如火线IEEE1394接口摄像头、USB接口摄像头或千兆以太网GigE摄像头(GigE Vision interface)等。机器视觉摄像头的典型应用可分为离线处理功能的摄像头和在线处理功能的摄像头。
离线处理功能的摄像头可单独对摄像头供电,并可通过电气接口将原始数据传送至主机。视频传输既可以是连续帧,也可以是单帧数据,具体取决于应用的需要。单帧捕获与视频传输被称作触发模式,需要外部系统通常以CMOS级向摄像头系统发送电子脉冲。摄像头逻辑将启动一个帧集成,并通过电气接口将扫描的数据发送至主机。在某些情况下,原始数据通过总线与同步信号、时钟和数据一起发送给帧接收器等终端数据采集系统。帧接收器在存储器中存储数据,随后可由主机应用软件对数据进行存取以处理和控制。
离线处理的一大优势在于,单靠一个主机就能满足摄像头操控与系统控制两者之需。但是由于视频数据从摄像头每帧传输存在一定的延迟,因此这种处理方式不适用于实时处理的应用,比如器件生产过程中传送带上的产品检查。
由于近来DSP处理器发展非常快,已经具备实时执行复杂算法的计算功能,因此也使得摄像头的在线处理成为可能。在线处理功能的摄像头包括感应器与DSP处理器,二者可通过非粘接逻辑、也可通过某种粘接逻辑连接。DMA 将感应器扫描的视频直接发送至DSP 存储器,并进行逐帧处理。控制函数的最终结果由处理器在被控制的系统中直接启动,或在主机上作为命令启动。
在线处理功能的摄像头进行视频处理的优势在于,数据处理可实时进行,而且在火线、USB 或千兆以太网接口上没有分组处理的负担。可采用字节优化型汇编代码,在时钟频率超过300MHz的DSP处理器上加快实时处理速度。
图像算法的实时处理对检查应用至关重要,例如,能够检查出传送带上移动过快的的器件。一个帧图像的计算完成并采取相应行动后,才可以继续向系统传输下一个图像帧。

在实际应用中,应依据具体的应用环境来选择摄像头,不管是离线处理功能的摄像头还是在线处理功能的摄像头,都具有各自的技术特点,选择合适合理的摄像头才能更好的体现出机器视觉系统的优越性。
CMOS(ComplementaryMetal Oxide Semiconductor)是互补式金属氧化物半导体的英文缩写,它将NMOS和PMOS二个相反极性的MOS半导体串起来,形成了集成电路中广泛使用的一个基本单元。例如计算机中用量最大的内存——动态存储器,就是用CMOS工艺制造的。
CMOS的摄像机并不比CCD摄像机出现的时间晚多少,CCD在六十年代末,而CMOS在七十年代初相继开发出来,后来之所以CCD占了统治地位,是因为在当时的工艺制造技术条件下,CMOS的图像质量太差了。直至1990年,新工艺的发展,使开发人员再一次对CMOS产生了兴趣,主要是看到了CMOS的低功耗、高集成(整个摄像机集成在一片晶体内)、低制造成本(基于不需重新建立新的生产线,可以在已有的主流的逻辑和存储器CMOS流水线中进行)。经过大量的投入和努力,CMOS摄像机在近几年已获得了极大的成功,已形成了对CCD的强大挑战。形成了CCD和CMOS二个激烈竞争的发展方向和阵营。

在过去,CMOS图像传感器给人的印象是低端产品,例如商务用传真机、复印机、扫描仪,到今日,以娱乐为主的摄像机、手机拍摄组件,直至大紫大红的网上摄像机也多为CMOS传感器。同时,CMOS摄像机在图像质量上已取得长足的进步,即使在对图像质量要求较高的投影仪上也获得了使用。
无论是CMOS还是CCD,它们都是用光敏像元阵列将入射的光图像转换成像元内的电荷,所不同的是将这些像元中的电荷取出,并转换成电压的方式和途径不同。CCD是用电荷量来载荷图像信息的,而CMOS是用电压量来载荷图像信息的。

CMOS和CCD的工作过程如下图所示,从图可以看出,CCD像元将光转换为电荷后,用电荷耦合的方法,将电荷逐点、逐行地用电荷移位寄存器移出,直至电荷/电压转换器,图像信息用电荷的形式在芯片内移动输出;而CMOS则以完全不同的方式将图像信息送出像元阵列,从图(b)可以看出,每一个像元光敏单元都有一个电荷/电压转换单元与之相伴,所以像元电荷马上转换成为电压,再通过与之对应的矩阵开关,将电压送出阵列,所以CMOS的图像信息是以电压的形式传送输出的。由于这种完全不同的结构,为它们带来了各自的长处和短处。
aac.jpg
CCD和CMOS工作过程示意图
CMOS摄像机有超强的集成度、低功耗和小尺寸的优势;但在图像质量,特别在低照度下和灵活性方面就要逊色多了。所以CMOS适合于批量大、有空间和重量限制,而图像质量要求不是太高的领域,例如保安、生物测量仪等领域使用,包括机器视觉系统中对图像质量要求不严的场合,例如数字或文学识别、易区分的缺陷检测、简单物体几何分类、简单场景自动导航等等。


此贴会持续更新中,有兴趣的贴友,可以持续关注哦
迈德威视的相机无缝兼容halcon、opencv、labview等机器视觉软件,为您提供最具性价比的工业相机。
欢迎来电咨询或访问迈德威视官网http://www.mindvision.com.cn
电话:0755-28376557     手机:18576735596 李工        QQ:2390812618



奖励计划已经开启,本站鼓励作者发布最擅长的技术内容和资源,流量变现就在现在,[点我]加入吧~~~Go
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表