训练了一个Resnet50的分类模型. 使用如下代码转换模型到TensorRT:
- HTuple hv_ConversionReport, hv_OptimizeForInferenceParams;
- SetDlModelParam(hv_DLModelHandle, "device", hv_DLDeviceCPU);
- GetDlDeviceParam(hv_DLDeviceTrt03, "optimize_for_inference_params", &hv_OptimizeForInferenceParams);
- OptimizeDlModelForInference(hv_DLModelHandle, hv_DLDeviceTrt03, hv_Precision,HTuple(), hv_OptimizeForInferenceParams, &m_hv_DLModelHandle[2], &hv_ConversionReport);
复制代码
将加载的同一个模型转换3次:
- OptimizeDlModelForInference(hv_DLModelHandle, hv_DLDeviceTrt01, hv_Precision, HTuple(), hv_OptimizeForInferenceParams, &m_hv_DLModelHandle[0], &hv_ConversionReport);
- OptimizeDlModelForInference(hv_DLModelHandle, hv_DLDeviceTrt01, hv_Precision, HTuple(), hv_OptimizeForInferenceParams, &m_hv_DLModelHandle[1], &hv_ConversionReport);
- OptimizeDlModelForInference(hv_DLModelHandle, hv_DLDeviceTrt01, hv_Precision, HTuple(), hv_OptimizeForInferenceParams, &m_hv_DLModelHandle[2], &hv_ConversionReport);
复制代码
然后对同一张图片进行推理, 发现不同模型置信度有少许偏差:
- 0.967595<==>0.0324055
- 0.968262<==>0.03158570.96802<==>0.0319796
复制代码
请问有人遇到同样的问题吗? 怎么解决?
另外就是模型加载和转换过程很慢, 耗时很长. 请问是不是有解决办法.
|