classify_class_svmT_classify_class_svmClassifyClassSvmClassifyClassSvmclassify_class_svm (算子名称)

名称

classify_class_svmT_classify_class_svmClassifyClassSvmClassifyClassSvmclassify_class_svm — Classify a feature vector by a support vector machine.

参数签名

classify_class_svm( : : SVMHandle, 特征, Num : Class)

Herror T_classify_class_svm(const Htuple SVMHandle, const Htuple 特征, const Htuple Num, Htuple* Class)

void ClassifyClassSvm(const HTuple& SVMHandle, const HTuple& 特征, const HTuple& Num, HTuple* Class)

HTuple HClassSvm::ClassifyClassSvm(const HTuple& 特征, const HTuple& Num) const

static void HOperatorSet.ClassifyClassSvm(HTuple SVMHandle, HTuple 特征, HTuple num, out HTuple classVal)

HTuple HClassSvm.ClassifyClassSvm(HTuple 特征, HTuple num)

def classify_class_svm(svmhandle: HHandle, 特征: Sequence[float], num: Sequence[int]) -> Sequence[int]

def classify_class_svm_s(svmhandle: HHandle, 特征: Sequence[float], num: Sequence[int]) -> int

描述

classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm computes the best NumNumNumNumnumnum classes of the feature vector 特征特征特征特征特征特征 with the SVM SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle and returns them in ClassClassClassClassclassValclass. If the classifier was created in the ModeModeModeModemodemode = 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one""one-versus-one", the classes are ordered by the number of votes of the sub-classifiers. If ModeModeModeModemodemode = 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all""one-versus-all" was used, the classes are ordered by the value of each sub-classifier (see create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm for more details). If the classifier was created in the ModeModeModeModemodemode = 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection""novelty-detection", it determines whether the feature vector belongs to the same class as the training data (ClassClassClassClassclassValclass = 1) or is regarded as outlier (ClassClassClassClassclassValclass = 0). In this case NumNumNumNumnumnum must be set to 1 as the classifier only determines membership.

Before calling classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm, the SVM must be trained with train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm.

运行信息

参数表

SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (input_control)  class_svm HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

SVM handle.

特征特征特征特征特征特征 (input_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Feature vector.

NumNumNumNumnumnum (input_control)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of best classes to determine.

Default: 1

Suggested values: 1, 2, 3, 4, 5

ClassClassClassClassclassValclass (output_control)  integer(-array) HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Result of classifying the feature vector with the SVM.

结果

If the parameters are valid the operator classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

可能的前置算子

train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm, read_class_svmread_class_svmReadClassSvmReadClassSvmReadClassSvmread_class_svm

可替代算子

apply_dl_classifierapply_dl_classifierApplyDlClassifierApplyDlClassifierApplyDlClassifierapply_dl_classifier

参考其它

create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm

References

John Shawe-Taylor, Nello Cristianini: “Kernel Methods for Pattern Analysis”; Cambridge University Press, Cambridge; 2004.
Bernhard Schölkopf, Alexander J.Smola: “Learning with Kernels”; MIT Press, London; 1999.

模块

Foundation