51Halcon机器视觉

 找回密码
 会员注册

QQ登录

只需一步,快速开始

扫一扫,微信登录

查看: 101|回复: 1

[资料] (转)深度学习相关介绍

[复制链接]
  • TA的每日心情
    窃喜
    2019-12-2 10:35
  • 签到天数: 51 天

    连续签到: 1 天

    [LV.5]常住居民I

    120

    主题

    377

    帖子

    1582

    积分

    Rank: 7Rank: 7Rank: 7

    积分
    1582

    优秀版主

    发表于 2020-5-23 09:17:50 | 显示全部楼层 |阅读模式

    51Halcon诚邀您的加入,专注于机器视觉开发与应用技术,我们一直都在努力!

    您需要 登录 才可以下载或查看,没有帐号?会员注册

    x
    深度学习、神经网络、机器学习、人工智能的关系 1.jpg
    深度学习、神经网络
    深度学习的概念源于人工神经网络的研究,但是并不完全等于传统神经网络。
    不过在叫法上,很多深度学习算法中都会包含”神经网络”这个词,比如:卷积神经网络、循环神经网络。
    所以,深度学习可以说是在传统神经网络基础上的升级,约等于神经网络。

    2.png


    大白话解释深度学习
    我们以识别图片中的汉字为例。
    假设深度学习要处理的信息是“水流”,而处理数据的深度学习网络是一个由管道和阀门组成的巨大水管网络。
    网络的入口是若干管道开口,网络的出口也是若干管道开口。
    这个水管网络有许多层,每一层由许多个可以控制水流流向与流量的调节阀。根据不同任务的需要,水管网络的层数、每层的调节阀数量可以有不同的变化组合。
    对复杂任务来说,调节阀的总数可以成千上万甚至更多。
    水管网络中,每一层的每个调节阀都通过水管与下一层的所有调节阀连接起来,组成一个从前到后,逐层完全连通的水流系统。
    3.png

    那么,计算机该如何使用这个庞大的水管网络来学习识字呢?
    比如,当计算机看到一张写有“田”字的图片,就简单将组成这张图片的所有数字(在计算机里,图片的每个颜色点都是用“0”和“1”组成的数字来表示的)全都变成信息的水流,从入口灌进水管网络。
    4.png
    我们预先在水管网络的每个出口都插一块字牌(应该所谓的类型分类),对应于每一个我们想让计算机认识的汉字
    这时,因为输入的是“田”这个汉字,等水流流过整个水管网络,计算机就会跑到管道出口位置去看一看,是不是标记由“田”字的管道出口流出来的水流最多。
    如果是这样,就说明这个管道网络符合要求。如果不是这样,就调节水管网络里的每一个流量调节阀,让“田”字出口“流出”的水最多。
    这下,计算机要忙一阵了,要调节那么多阀门!好在计算机的速度快,暴力的计算加上算法的优化,总是可以很快给出一个解决方案,调好所有阀门,让出口处的流量符合要求。
    这个比喻非常生动!
    5.png
    下一步,学习“申”字时,我们就用类似的方法,把每一张写有“申”字的图片变成一大堆数字组成的水流,灌进水管网络,看一看,是不是写有“申”字的那个管道出口流水最多,如果不是,我们还得再调整所有的阀门。这一次,要既保证刚才学过的“田”字不受影响,也要保证新的“申”字可以被正确处理。
    6.png
    如此反复进行,知道所有汉字对应的水流都可以按照期望的方式流过整个水管网络。
    这时,我们就说,这个水管网络是一个训练好的深度学习模型了。
    当大量汉字被这个管道网络处理,所有阀门都调节到位后,整套水管网络就可以用来识别汉字了。
    这时,我们可以把调节好的所有阀门都“焊死”,静候新的水流到来。
    7.png

    与训练时做的事情类似,未知的图片会被计算机转变成数据的水流,灌入训练好的水管网络。这时,计算机只要观察一下,哪个出水口流出来的水流最多,这张图片写的就是哪个字。
    深度学习大致就是这么一个用人类的数学知识与计算机算法构建起来的整体架构,再结合尽可能多的训练数据以及计算机的大规模运算能力去调节内部参数,尽可能逼近问题目标的半理论、半经验的建模方式。


    1.发帖求助前要善用论坛搜索功能,那里可能会有你要找的答案;

    2.提问请组织好自己的逻辑,标题注明大概是什么问题,问题内容写详细,需提供问题症状、错误代码、截图、位置等等信息,不要让别人去猜你想问啥;

    3.如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子分类或者标题前面加上【已解决】

    4.回报帮助你解决问题的坛友,右下角【免费评分】赠与对方视觉币和热心值,伸手党遭人唾弃,做一个热心并受欢迎的人!

  • TA的每日心情
    窃喜
    2019-12-2 10:35
  • 签到天数: 51 天

    连续签到: 1 天

    [LV.5]常住居民I

    120

    主题

    377

    帖子

    1582

    积分

    Rank: 7Rank: 7Rank: 7

    积分
    1582

    优秀版主

     楼主| 发表于 2020-5-23 09:35:00 | 显示全部楼层
    4种典型的深度学习算法



    卷积神经网络 – CNN
    CNN 的价值:
    • 能够将大数据量的图片有效的降维成小数据量(并不影响结果)
    • 能够保留图片的特征,类似人类的视觉原理
    CNN 的基本原理:
    • 卷积层 – 主要作用是保留图片的特征
    • 池化层 – 主要作用是把数据降维,可以有效的避免过拟合
    • 全连接层 – 根据不同任务输出我们想要的结果
    CNN 的实际应用:
    • 图片分类、检索
    • 目标定位检测
    • 目标分割
    • 人脸识别
    • 骨骼识别

    循环神经网络 – RNN
    RNN 是一种能有效的处理序列数据的算法。比如:文章内容、语音音频、股票价格走势…
    之所以他能处理序列数据,是因为在序列中前面的输入也会影响到后面的输出,相当于有了“记忆功能”。但是 RNN 存在严重的短期记忆问题,长期的数据影响很小(哪怕他是重要的信息)。
    于是基于 RNN 出现了 LSTM 和 GRU 等变种算法。这些变种算法主要有几个特点:
    • 长期信息可以有效的保留
    • 挑选重要信息保留,不重要的信息会选择“遗忘”
    RNN 几个典型的应用如下:
    • 文本生成
    • 语音识别
    • 机器翻译
    • 生成图像描述
    • 视频标记

    生成对抗网络 – GANs
    假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的“运动”,警察们开始恢复城市中的巡逻,很快,一批“学艺不精”的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。
    警察们开始继续训练自己的破案技术,开始抓住那些越来越狡猾的小偷。随着这些职业惯犯们的落网,警察们也练就了特别的本事,他们能很快能从一群人中发现可疑人员,于是上前盘查,并最终逮捕嫌犯;小偷们的日子也不好过了,因为警察们的水平大大提高,如果还想以前那样表现得鬼鬼祟祟,那么很快就会被警察捉住。为了避免被捕,小偷们努力表现得不那么“可疑”,而魔高一尺、道高一丈,警察也在不断提高自己的水平,争取将小偷和无辜的普通群众区分开。随着警察和小偷之间的这种“交流”与“切磋”,小偷们都变得非常谨慎,他们有着极高的偷窃技巧,表现得跟普通群众一模一样,而警察们都练就了“火眼金睛”,一旦发现可疑人员,就能马上发现并及时控制——最终,我们同时得到了最强的小偷和最强的警察。
    深度强化学习 – RL
    强化学习算法的思路非常简单,以游戏为例,如果在游戏中采取某种策略可以取得较高的得分,那么就进一步“强化”这种策略,以期继续取得较好的结果。这种策略与日常生活中的各种“绩效奖励”非常类似。我们平时也常常用这样的策略来提高自己的游戏水平。
    在 Flappy bird 这个游戏中,我们需要简单的点击操作来控制小鸟,躲过各种水管,飞的越远越好,因为飞的越远就能获得更高的积分奖励。
    这就是一个典型的强化学习场景:
    • 机器有一个明确的小鸟角色——代理
    • 需要控制小鸟飞的更远——目标
    • 整个游戏过程中需要躲避各种水管——环境
    • 躲避水管的方法是让小鸟用力飞一下——行动
    • 飞的越远,就会获得越多的积分——奖励
    • 你会发现,强化学习和监督学习、无监督学习 最大的不同就是不需要大量的“数据喂养”。而是通过自己不停的尝试来学会某些技能

    1.发帖求助前要善用论坛搜索功能,那里可能会有你要找的答案;

    2.提问请组织好自己的逻辑,标题注明大概是什么问题,问题内容写详细,需提供问题症状、错误代码、截图、位置等等信息,不要让别人去猜你想问啥;

    3.如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子分类或者标题前面加上【已解决】

    4.回报帮助你解决问题的坛友,右下角【免费评分】赠与对方视觉币和热心值,伸手党遭人唾弃,做一个热心并受欢迎的人!

    您需要登录后才可以回帖 会员登录 | 会员注册

    本版积分规则

    51Halcon会员技术交流会员技术交流 | 51Halcon官方客服咨询官方客服咨询 | Halcon切换助手使用反馈切换助手使用反馈 | 51Halcon论坛管理团队论坛管理团队

    申请友链| 小黑屋| 手机版| Archiver|  

    粤ICP备15095995号-2 粤公网安备44030602000670号

    CopyRight © 2015-2020 51Halcon机器视觉. Tencent Cloud X3.4.

    快速回复 返回顶部 返回列表