classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp (算子名称)

名称

classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp — Calculate the class of a feature vector by a multilayer perceptron.

参数签名

classify_class_mlp( : : MLPHandle, 特征, Num : Class, Confidence)

Herror T_classify_class_mlp(const Htuple MLPHandle, const Htuple 特征, const Htuple Num, Htuple* Class, Htuple* Confidence)

void ClassifyClassMlp(const HTuple& MLPHandle, const HTuple& 特征, const HTuple& Num, HTuple* Class, HTuple* Confidence)

HTuple HClassMlp::ClassifyClassMlp(const HTuple& 特征, const HTuple& Num, HTuple* Confidence) const

Hlong HClassMlp::ClassifyClassMlp(const HTuple& 特征, const HTuple& Num, double* Confidence) const

static void HOperatorSet.ClassifyClassMlp(HTuple MLPHandle, HTuple 特征, HTuple num, out HTuple classVal, out HTuple confidence)

HTuple HClassMlp.ClassifyClassMlp(HTuple 特征, HTuple num, out HTuple confidence)

int HClassMlp.ClassifyClassMlp(HTuple 特征, HTuple num, out double confidence)

def classify_class_mlp(mlphandle: HHandle, 特征: Sequence[float], num: Sequence[int]) -> Tuple[Sequence[int], Sequence[float]]

def classify_class_mlp_s(mlphandle: HHandle, 特征: Sequence[float], num: Sequence[int]) -> Tuple[int, float]

描述

classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp computes the best NumNumNumNumnumnum classes of the feature vector 特征特征特征特征特征特征 with the multilayer perceptron (MLP) MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle and returns the classes in ClassClassClassClassclassValclass and the corresponding confidences (probabilities) of the classes in ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence. Before calling classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp, the MLP must be trained with train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp.

classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp can only be called if the MLP is used as a classifier with OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function = 'softmax'"softmax""softmax""softmax""softmax""softmax" (see create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp). Otherwise, an error message is returned. classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp corresponds to a call to evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp and an additional step that extracts the best NumNumNumNumnumnum classes. As described with evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp, the output values of the MLP can be interpreted as probabilities of the occurrence of the respective classes. In most cases it should be sufficient to use NumNumNumNumnumnum = 1 in order to decide whether the probability of the best class is high enough. In some applications it may be interesting to also take the second best class into account (NumNumNumNumnumnum = 2), particularly if it can be expected that the classes show a significant degree of overlap.

运行信息

参数表

MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle (input_control)  class_mlp HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

MLP handle.

特征特征特征特征特征特征 (input_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Feature vector.

NumNumNumNumnumnum (input_control)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of best classes to determine.

Default: 1

Suggested values: 1, 2, 3, 4, 5

ClassClassClassClassclassValclass (output_control)  integer(-array) HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Result of classifying the feature vector with the MLP.

ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence (output_control)  real(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Confidence(s) of the class(es) of the feature vector.

结果

If the parameters are valid, the operator classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

可能的前置算子

train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp, read_class_mlpread_class_mlpReadClassMlpReadClassMlpReadClassMlpread_class_mlp

可替代算子

apply_dl_classifierapply_dl_classifierApplyDlClassifierApplyDlClassifierApplyDlClassifierapply_dl_classifier, evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp

参考其它

create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp

References

Christopher M. Bishop: “Neural Networks for Pattern Recognition”; Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London; 1999.

模块

Foundation