evaluate_class_mlpT_evaluate_class_mlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp (算子名称)
名称
evaluate_class_mlpT_evaluate_class_mlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
— Calculate the evaluation of a feature vector by a multilayer
perceptron.
参数签名
def evaluate_class_mlp(mlphandle: HHandle, 特征: Sequence[float]) -> Sequence[float]
描述
evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
computes the result ResultResultResultResultresultresult
of
evaluating the feature vector 特征特征特征特征特征特征
with the multilayer
perceptron (MLP) MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
. The formulas used for the
evaluation are described with create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
. Before
calling evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
, the MLP must be trained with
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
.
If the MLP is used for regression (function approximation), i.e., if
(OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
= 'linear'"linear""linear""linear""linear""linear"), ResultResultResultResultresultresult
is
the value of the function at the coordinate 特征特征特征特征特征特征
. For
OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
= 'logistic'"logistic""logistic""logistic""logistic""logistic" and
'softmax'"softmax""softmax""softmax""softmax""softmax", the values in ResultResultResultResultresultresult
can be interpreted
as probabilities. Hence, for OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
=
'logistic'"logistic""logistic""logistic""logistic""logistic" the elements of ResultResultResultResultresultresult
represent the
probabilities of the presence of the respective independent
attributes. Typically, a threshold of 0.5 is used to decide whether
the attribute is present or not. Depending on the application,
other thresholds may be used as well. For OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
= 'softmax'"softmax""softmax""softmax""softmax""softmax" usually the position of the maximum value of
ResultResultResultResultresultresult
is interpreted as the class of the feature vector,
and the corresponding value as the probability of the class. In
this case, classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
should be used instead of
evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
because classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
directly returns the class and corresponding probability.
运行信息
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
参数表
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
(input_control) class_mlp →
HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP handle.
特征特征特征特征特征特征
(input_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector.
ResultResultResultResultresultresult
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Result of evaluating the feature vector with
the MLP.
结果
If the parameters are valid, the operator evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
returns the value 2 (
H_MSG_TRUE)
. If necessary, an exception is
raised.
可能的前置算子
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
,
read_class_mlpread_class_mlpReadClassMlpReadClassMlpReadClassMlpread_class_mlp
可替代算子
classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
参考其它
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
References
Christopher M. Bishop: “Neural Networks for Pattern Recognition”;
Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London;
1999.
模块
Foundation