热点推荐

查看: 1805|回复: 42
收起左侧

[资料] FFT的详细解释

[复制链接]
  • TA的每日心情
    慵懒
    4 天前
  • 签到天数: 249 天

    连续签到: 1 天

    [LV.8]以坛为家I

    79

    主题

    283

    帖子

    7355

    积分

    Rank: 8Rank: 8Rank: 8Rank: 8

    积分
    7355

    热心会员突出贡献优质会员最佳新人

    发表于 2017-3-22 16:51:13 | 显示全部楼层 |阅读模式

    51Halcon诚邀您的加入,专注于机器视觉开发与应用技术,我们一直都在努力!

    您需要 登录 才可以下载或查看,没有帐号?会员注册

    x
    本帖最后由 IronMan 于 2017-3-22 17:01 编辑

           FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
    虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

           现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。

           采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
           假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
    我们来看看FFT的结果的模值如图所示。

                          图1 FFT结果
        从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
    1点: 512+0i
    2点: -2.6195E-14 - 1.4162E-13i
    3点: -2.8586E-14 - 1.1898E-13i

    50点:-6.2076E-13 - 2.1713E-12i
    51点:332.55 - 192i
    52点:-1.6707E-12 - 1.5241E-12i

    75点:-2.2199E-13 -1.0076E-12i
    76点:3.4315E-12 + 192i
    77点:-3.0263E-14 +7.5609E-13i

        很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:
    1点: 512
    51点:384
    76点:192
        按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。
        然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。

        总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。

    [附录:本测试数据使用的matlab程序]
    close all; %先关闭所有图片
    Adc=2;  %直流分量幅度
    A1=3;   %频率F1信号的幅度
    A2=1.5; %频率F2信号的幅度
    F1=50;  %信号1频率(Hz)
    F2=75;  %信号2频率(Hz)
    Fs=256; %采样频率(Hz)
    P1=-30; %信号1相位(度)
    P2=90;  %信号相位(度)
    N=256;  %采样点数
    t=[0:1/Fs:N/Fs]; %采样时刻

    %信号
    S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
    %显示原始信号
    plot(S);
    title('原始信号');

    figure;
    Y = fft(S,N); %做FFT变换
    Ayy = (abs(Y)); %取模
    plot(Ayy(1:N)); %显示原始的FFT模值结果
    title('FFT 模值');

    figure;
    Ayy=Ayy/(N/2);   %换算成实际的幅度
    Ayy(1)=Ayy(1)/2;
    F=([1:N]-1)*Fs/N; %换算成实际的频率值
    plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
    title('幅度-频率曲线图');

    figure;
    Pyy=[1:N/2];
    for i="1:N/2"
    Pyy(i)=phase(Y(i)); %计算相位
    Pyy(i)=Pyy(i)*180/pi; %换算为角度
    end;
    plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
    title('相位-频率曲线图');

    看完这个你就明白谐波分析了。

    手把手教你理解(FFT).doc
    游客,如果您要查看本帖隐藏内容请回复


    发帖求助前要善用论坛搜索功能,那里可能会有你要找的答案;

    如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子分类或者标题加上【已解决】

    如何回报帮助你解决问题的坛友,可以以【悬赏】的方式提问,伸手党遭人唾弃,做一个热心并受欢迎的人!

  • TA的每日心情
    奋斗
    2018-7-9 01:28
  • 签到天数: 8 天

    连续签到: 2 天

    [LV.3]偶尔看看II

    1

    主题

    17

    帖子

    2311

    积分

    Rank: 6Rank: 6

    积分
    2311
    发表于 2017-3-26 20:57:27 | 显示全部楼层

    RE: FFT的详细解释

    看一下,不知道有没有图

    发帖求助前要善用论坛搜索功能,那里可能会有你要找的答案;

    如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子分类或者标题加上【已解决】

    如何回报帮助你解决问题的坛友,可以以【悬赏】的方式提问,伸手党遭人唾弃,做一个热心并受欢迎的人!

    该用户从未签到

    0

    主题

    1

    帖子

    161

    积分

    Rank: 2Rank: 2

    积分
    161
    发表于 2017-3-27 16:53:07 | 显示全部楼层

    RE: FFT的详细解释

    filetype:pdf

    发帖求助前要善用论坛搜索功能,那里可能会有你要找的答案;

    如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子分类或者标题加上【已解决】

    如何回报帮助你解决问题的坛友,可以以【悬赏】的方式提问,伸手党遭人唾弃,做一个热心并受欢迎的人!

    您需要登录后才可以回帖 会员登录 | 会员注册

    本版积分规则

    经营性网站备案信息 经营性网站
    备案信息

    中国互联网举报中心 中国互联网
    举报中心

    中国文明网传播文明 中国文明网
    传播文明

    诚信网站

    深圳市市场监督管理局企业主体身份公示 工商网监
    电子标识

    快速回复 返回顶部 返回列表